

# TAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES

#### **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics |                                       |  |  |
|--------------------------------------------------------------------------|---------------------------------------|--|--|
| QUALIFICATION CODE: 07BSAM LEVEL: 6                                      |                                       |  |  |
| COURSE CODE: MAP602S                                                     | COURSE NAME: MATHEMATICAL PROGRAMMING |  |  |
| SESSION: JANUARY 2023                                                    | PAPER: THEORY                         |  |  |
| DURATION: 3 HOURS                                                        | MARKS: 100                            |  |  |

| SUPPLEMENTARY/SECOND OPPORTUNITY QUESTION PAPER |                                 |  |  |
|-------------------------------------------------|---------------------------------|--|--|
| EXAMINERS                                       | MR. B.E OBABUEKI, MR J AMUNYELA |  |  |
| MODERATOR:                                      | PROFESSOR ADETAYO EEGUNJOBI     |  |  |

| INSTRUCTIONS |                                                                      |  |  |  |
|--------------|----------------------------------------------------------------------|--|--|--|
| 1.           | Answer ALL questions in the booklet provided.                        |  |  |  |
| 2.           | Show clearly all the steps used in the calculations.                 |  |  |  |
| 3.           | All written work must be done in blue or black ink and sketches must |  |  |  |
|              | be done in pencil.                                                   |  |  |  |

### **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page)

#### Question 1 (10 marks)

A landscaper wants to mix her own fertilizer containing a minimum of 50 units of phosphates, 240 units of nitrates and 210 units of calcium. Brand 1 contains 1 unit of phosphates, 6 units of nitrates and 15 units of calcium. Brand 2 contains 5 units of phosphates, 8 units of nitrates and 6 units of calcium. Brand 1 costs \$250 per kilogramme; brand 2 costs \$500 per kilogramme.

Model this information into a linear programming problem. Declare your variables unambiguously and name the constraints. DO NO SOLVE. (10)

#### Question 2 (13 marks)

Solve the following minimization problem graphically. Use a scale of 1cm to 25 units on the x-axis and a scale of 1cm to 5 units on the y-axis. (13)

Minimize 
$$C = 20x + 30y$$
  
Subject to  $9x + 100y \ge 4500$   
 $3x + 20y \le 1200$   
 $15000 \le 75x + 200y$   
 $y \le 60$   
 $x \ ; y \ge 0$ 

#### Question 3 (29 marks)

Consider the following L-P model:

Minimize 
$$Z = 240x + 120y$$
  
Subject to  $4x + 8y \ge 56$   
 $2x + 2y \ge 24$   
 $3x + y \ge 18$   
 $x \ge 0$ ;  $y \ge 0$ 

- 3.1 Write down the dual of the model. (5)
- 3.2 Solve the dual model. (14)
- 3.3 Suppose the solution of the dual model is a = 0; b = 30; c = 60;  $t_1 = 0$ ;  $t_2 = 0$ ; D = 1800.

  Use this solution to determine the solution of the given primal model. (10)

## Question 4 (17 marks)

Consider the following L-P model:

Minimize 
$$Q = 2x + 4y + 5z + 3t$$
  
Subject to  $-x-2y+2z \ge 40$   
 $3x + 2z + t \le 100$   
 $x - 2y - z + 4t \ge 50$   
 $x; y; z; t \ge 0$ 

- 4.1 Re-write the model to include all the necessary variables.
- 4.2 Develop the first (not just the initial) tableau for the model and circle the pivot. DO NOT SOLVE.(12)

#### Question 5 (17 marks)

Consider the following transportation table:

|          | Destination 1 | Destination 2 | Destination 3 | Supply |
|----------|---------------|---------------|---------------|--------|
| Source 1 | 10            | 15            | 20            | 20     |
| Source 2 | 12            | 7             | 9             | 20     |
| Source 3 | 6             | 14            | 16            | 20     |
| Demand   | 30            | 15            | 15            |        |

- 5.1 Determine the initial transportation cost using the North-west corner method. (6)
- 5.2 The following table is an estimate of the minimum cost of the transportation problem:

| 10 |    | 15 |    | 20 |    |
|----|----|----|----|----|----|
|    | 20 |    |    |    |    |
| 12 |    | 7  |    | 9  |    |
|    |    |    | 15 |    | 5  |
| 6  |    | 14 |    | 16 |    |
|    | 10 |    |    |    | 10 |

Use this table to determine the minimum cost for the transportation problem. (11)

(5)

# Question 6 (14 marks)

Given the following assignment table, assign workers A, B, C, and D to the tasks 1, 2, 3, and 4 in such a way that assignment cost is at its minimum. Also calculate the minimum cost. (14)

|          | Task 1 | Task 2 | Task 3 | Task 4 |
|----------|--------|--------|--------|--------|
| Worker A | 100    | 85     | 85     | 90     |
| Worker B | 45     | 95     | 65     | 75     |
| Worker C | 135    | 105    | 100    | 115    |
| Worker D | 55     | 120    | 105    | 125    |

**END OF PAPER** 

**TOTAL MARKS: 100**